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This paper presents a method for simultaneously identifying both the elastic and anelastic proper-

ties of the porous frame of anisotropic open-cell foams. The approach is based on an inverse esti-

mation procedure of the complex stiffness matrix of the frame by performing a model fit of a set of

transfer functions of a sample of material subjected to compression excitation in vacuo. The mate-

rial elastic properties are assumed to have orthotropic symmetry and the anelastic properties are

described using a fractional-derivative model within the framework of an augmented Hooke’s law.

The inverse estimation problem is formulated as a numerical optimization procedure and solved

using the globally convergent method of moving asymptotes. To show the feasibility of the

approach a numerically generated target material is used here as a benchmark. It is shown that the

method provides the full frequency-dependent orthotropic complex stiffness matrix within a reason-

able degree of accuracy. VC 2012 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4731222]
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I. INTRODUCTION

Porous wools and foams exhibit varying degrees of ani-

sotropy in their dynamic macroscopic elastic and anelastic

properties. Such anisotropy may be attributed to the micro-

structural geometric shape of the cells,1,2 which in the case

of foams arises from the directions of injection flow and rise

of the material during the manufacturing process. Further-

more, the anelastic damping properties are also influenced

by the chemical formulation of the polymer used for the

solid material constituting the frame of the porous material,

as well as by the state of deformation in the frame.3

In many applications involving porous materials, the

assumption of isotropic properties yields satisfactory correla-

tions between experimental and computed results. This is

particularly true in cases where airborne sound absorption is

of interest. However, for porous models in the scope of clas-

sical vibroacoustics, and specifically those where the

structure-borne properties are important, the sources of dif-

ferences between predicted and measured results are not

fully understood. A not yet fully explored aspect is whether

the possible anisotropy of the constitutive properties may be

important enough to influence the behavior to a significant

extent. Therefore, detailed studies are necessary in order to

assess the influence of anisotropy on the vibroacoustic

behavior of structures comprising porous materials.

The problem of identifying the elastic moduli of porous

materials has been studied previously by one of the authors

in collaborative efforts initially focused on fibrous materi-

als.4,5 In those works, the viscoelasticity was assumed to be

represented by an isotropic material model, thus not neces-

sarily following the material symmetries of the elasticity

model. Alternative approaches for the determination of the

elastic parameters of open-cell foams consist of quasi-static

testing to identify the elastic modulus and the Poisson’s

ratio.6–9 In previous work on the mechanical characterization

of anisotropic foams, Melon et al.6 assumed that the mount-

ing of the cubic foam sample tested was aligned with the rise

direction. They found that the tested foams were reasonably

well described by a transversely isotropic model, in particu-

lar in terms of the Young’s moduli. However, the estimation

of the shear moduli was reported to be less accurate. An ex-

haustive review of the existing methods for characterizing

porous materials would be out of the scope of the present pa-

per and the reader is referred to the recently published work

by Jaouen et al.10 Here it will suffice to recall one of the

main conclusions drawn therein stressing the importance of

the work discussed in the present paper, i.e., the lack of tech-

niques for accessing the elastic and damping properties of

anisotropic porous media.

A complicating aspect in the characterization of porous

materials is that the interstitial fluid in the pores and its inter-

action with the solid frame contribute to the dissipation of

energy. Thus, to establish a constitutive model, the dissipa-

tive mechanisms related to internal frequency-dependent

fluid-structure interaction must be isolated from the dissipa-

tion related to the anelastic relaxation mechanisms associ-

ated with the deformation state of the solid frame. Early

works by Pritz11–14 were focused on the dynamic characteri-

zation of fibrous materials and foams using vibration testing

in a seismic mass setup. The measurements were performed

in a vacuum chamber in order to remove the effect of air in

the pores of the material.

The key point of interest for the current work is the

consideration of the dynamic elastic moduli of the solid frame

as the superposition of elastic and anelastic contributions. In

fact, the elasticity is frequency independent and the anelasticity

is responsible for the variation of the dynamic properties with

frequency. Several equivalent forms of the parameterization of
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such anelastic part may be used. Biot introduced the concept of

hidden thermodynamic variables,15 later extended by Dovstam

and Dalenbring to a discrete multiple-process augmented

Hooke’s law.16–19 Alternative parameterizations have been

discussed by several authors,20–22 providing a compact expres-

sion with fewer parameters. In particular, the fractional deriva-

tive model,23,24 provides a causal description of the damping

mechanisms. It consists in a generalization of the classical

unit-order time derivative, from the consideration of energy

dissipation as a memory effect in the deformation of the mate-

rial. For instance, Pritz25,26 showed that a fractional-derivative

model described by four or five parameters allows to predict

the response of isotropic viscoelastic materials and to extract

their properties from experimental data. Recent work27,28

shows the applicability of a fractional-derivative model to the

inverse estimation of elastic and anelastic properties of iso-

tropic materials and of viscoelastic laminated plates.

It should be noted that in the context of dynamical char-

acterization of a certain material, the unique constitutive

properties are the dynamic moduli at the frequencies of inter-

est. The actual variation with frequency may then be para-

meterized in any suitable way depending on the specific

purpose at hand,22 bearing in mind that such parameteriza-

tion is not unique. Furthermore, the elastic anisotropy and

the anelastic anisotropy do not necessarily share the same

type of symmetry, a circumstance that considerably compli-

cates any attempt to characterize a real unknown material.

The current paper proposes the first steps in a methodol-

ogy for the identification of the anisotropic elastic and ane-

lastic moduli of the porous frame of open-cell foams,

through an inverse estimation approach. The constitutive

properties of the frame are modeled using an augmented

Hooke’s law, by considering the stiffness matrix as a super-

position of orthotropic elastic and anelastic contributions.

The inverse estimation procedure consists of a fit of numeri-

cally simulated frequency responses onto the responses of

the targeted material, with the constitutive properties used as

the variables of the adaptation. This requires an experimental

setup which is simple enough to be accurately represented in

a numerical simulation model. Here, the basic configuration

used by Pritz is chosen, in which a sample of material is

located in a vacuum chamber, placed on a shaker and loaded

with a seismic mass. The vertical vibration transfer functions

between the shaker and the surface of the seismic mass are

then used as targets for the inverse estimation. Special care

is taken to extract both compressive and shear moduli, which

is done through a variation of the loading conditions used.

The present paper is intended to discuss the theoretical

aspects of the proposed method. Therefore, the experimental

data used as a target is fictitious and free from imperfections

and noise. In a forthcoming paper, the application of the

method to a real foam will be discussed.

II. MATERIAL MODEL

A. Augmented Hooke’s law

In order to characterize the in vacuo dynamical proper-

ties of a porous material, it is necessary to establish a model

for describing the elasticity of the porous frame without the

influence of the fluid filling the pores. The starting point is

taken in the constitutive relations for anisotropic fluid-filled

porous materials given by Biot’s equations.29–31 Considering

zero pressure in the fluid phase in those equations leads to a

Hooke’s law for the frame, which can be written in the fre-

quency domain as

riðxÞ ¼ HijðxÞejðxÞ; i; j ¼ 1;…; 6; (1)

where ri and ej contain the components of the stress and

strain tensors according to

r ¼ ½r11 r22 r33 r23 r31 r12�T; (2)

e ¼ ½e11 e22 e33 2e23 2e31 2e12�T; (3)

and Hij denote the components of the stiffness matrix, which

entirely characterizes the material.

As discussed in the Introduction, several different mod-

els for such a dynamic stiffness matrix are available in litera-

ture, in particular when including viscoelastic effects. For

the purposes of the present paper, the augmented Hooke’s

law22 is used. This has the advantage of providing a causal,

functional description of the deformation of the material and

allows separation of the stiffness matrix into an elastic part,

related to fully relaxed material deformation, and an anelas-

tic part, accounting for reversible viscoelastic deformation,

i.e., anelastic deformation. With this choice of separation of

the moduli, into terms which are respectively independent

and dependent on the frequency, several equivalent forms of

the parameterization of the viscoelastic part of the stiffness

matrix may be used as discussed above. Previous work, i.e.,

Refs. 4 and 5 used the discrete multiple process augmented

Hooke’s law16 and for the present study it was decided to

explore the advantages with the fractional derivative model.

The components of the stiffness matrix assume the

form22

HijðxÞ ¼ H
ð0Þ
ij þ ~HijðxÞ; (4)

where H
ð0Þ
ij and ~HijðxÞ describe the elastic and anelastic

effects in the material, respectively. Using a sufficiently gen-

eral form of the fractional-derivative-based frequency de-

pendence, each component of the viscoelastic part of the

stiffness matrix then assumes the form

~HijðxÞ ¼
bij � saij

bij þ saij
; (5)

where s ¼ ix denotes Laplace’s variable, aij is the fractional

derivative order for the Hij modulus, bij ¼ 1=sij is the relaxa-

tion frequency, sij being the relaxation time for the Hij mod-

ulus of the material, and bij is a real matrix giving the

magnitude of the contribution of viscoelastic effects to the

motion of the material.

The derivative order is within the range

0 < aij � 1; i; j ¼ 1;…; 6 (6)
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the limiting case aij ¼ 1 corresponding to the conventional

model of dissipation effects.

It is quite obvious that the general model given above

poses a formidable challenge in finding its parameters.

Recalling that the primary objective of the current paper is

to verify the feasibility of a method for identifying the prop-

erties of the porous frame, some reasonable restrictions to

the model of the frequency dependence are introduced as a

first attempt. First, it is assumed that the fractional derivative

order is the same for all moduli, i.e., aij ¼ a, and that the

same holds for the relaxation frequencies, bij ¼ b. Then it is

assumed that the elastic and the anelastic moduli are collin-

ear. This can be expressed by stating

bij ¼ b � Hð0Þij (7)

and yields the simplified augmented Hooke’s law

HijðxÞ ¼ H
ð0Þ
ij 1þ b � sa

bþ sa

� �
; (8)

which is an approximation that actually restricts the model-

ing to represent the classical case of proportional damping.

As the approach discussed is quite general, it should be

pointed out that this approximation does not restrict the do-

main of applicability of the method itself. Furthermore, the

parameterization of the stiffness matrix provided by Eq. (8)

is equivalent to the four-parameter model proposed by

Pritz,25 whose only restriction is that it is applicable to mate-

rials with a symmetric loss peak.26 Choosing different forms

of either parameterization or material symmetries will

require a larger computational effort but would not necessar-

ily bring any further useful information for the proof of con-

cept discussed in the present paper.

An important aspect of this type of parameterization is

that it provides a compact representation of the frequency

dependency of the material moduli. As stated in Sec. I, the

separation between static, elastic and frequency dependent,

anelastic constitutive properties in Eq. (4) is to a certain

extent arbitrary. The unique properties are the actual

dynamic moduli in HijðxÞ and this fact gives some freedom

in the inverse estimation process setup which will be

described below.

B. Quantifying the degree of anisotropy of the
material

In order to facilitate the inverse estimation, it was found

useful to express the stiffness matrix in terms of a number of

scaling constants describing the degree of anisotropy of the

material with respect to an arbitrarily chosen isotropic, base-

line material. As discussed above this can be done without

any loss of generality and these scaling constants are then

used as the set of parameters on which the estimation proce-

dure is based, as described later-on in Sec. III. Here, the

reformulation in terms of these scaling constants starts from

the assumption that the material under consideration is

assumed to exhibit orthotropic symmetry, in which case the

compliance matrix, i.e., the inverse of the stiffness matrix,

can be written as32

Sij ¼

1

E1

� �12

E1

� �13

E1

0 0 0

� �21

E2

1

E2

� �23

E2

0 0 0

� �31

E3

� �32

E3

1

E3

0 0 0

0 0 0
1

G23

0 0

0 0 0 0
1

G31

0

0 0 0 0 0
1

G12

2
666666666666666664

3
777777777777777775

; (9)

where Ek is the Young’s modulus along axis k, Gkl is the

shear modulus in plane ðk; lÞ and �kl is the Poisson’s ratio for

stress along k resulting in transverse strain along l. Further-

more, the symmetry of the compliance matrix yields

�ij

Ei
¼ �ji

Ej
: (10)

It is well known that the stiffness and compliance matrices

must be positive-definite, a fact that may be used as con-

straints on the physical parameters in the estimation, as32

Ek > 0; (11a)

Gkl > 0; (11b)

�2
ij <

Ei

Ej
; (11c)

2�21�32�13 < 1� E1

E2

�2
21 �

E2

E3

�2
32 �

E3

E1

�2
13: (11d)

8>>>>>>><
>>>>>>>:

As a means of quantifying the degree of anisotropy of the

material, the parameters Ek, Gkl and �kl are written in terms

of the properties of the isotropic, baseline material and a

number of scaling constants, as

Em ¼ nmE; m ¼ 1; 2; 3; (12a)

Gkl ¼ nmG; m ¼ 9� k � l ¼ 4; 5; 6; (12b)

�kl ¼ nm�; m ¼ 4þ k þ l ¼ 7; 8; 9; (12c)

8><
>:

where nm are scaling constants for each of the nine parameters

and E, G ¼ E=2ð1þ �Þ and � are, respectively, the Young’s

modulus, the shear modulus and the Poisson’s ratio of the

baseline isotropic medium, with E > 0 and�1 < � < 1=2.

Using these relations, Eq. (9) can then be written in

terms of the scaling constants nm; m ¼ 1;…; 9 as

Sij ¼

1

n1E
� n7�

n1E
� n8�

n1E
0 0 0

1

n2E
� n9�

n2E
0 0 0

1

n3E
0 0 0

1

n4G
0 0

ðsymÞ 1

n5G
0

1

n6G

2
666666666666666664

3
777777777777777775

:

(13)
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The set of parameters nm determine the degree of anisotropy

of the material, such that the case nm ¼ 1 8m corresponds to

the baseline isotropic material. The validity of Eq. (13) is re-

stricted by the condition given in Eqs. (11), which in turn

can be written as

ni > 0; i ¼ 1; :::; 6; (14a)

n2
4þiþj�

2 <
ni

nj

; ij ¼ 21; 13; 32; (14b)

2�3n7n8n9 < 1� �2
X

ij¼21;13;32

nj

ni

n2
4þiþj: (14c)

8>>>>><
>>>>>:

In addition to the scaling constants used for the nine elastic

moduli of the material, three additional dimensionless quan-

tities are used in order to relate the anelastic properties of the

orthotropic unknown material to the ones of the isotropic

material of reference, by writing

a ¼ n10a0; (15a)

b ¼ n11b0; (15b)

b ¼ n12b0; (15c)

8><
>:

where a0, b0 and b0 are the anelastic properties of the base-

line material.

The variable change using scaling constants as a basis

for the estimation of the properties of the material presents

two main advantages. The first is that the set of unknown

scaling constants is dimensionless, thus rendering the esti-

mation procedure less sensitive to a higher degree of anisot-

ropy in one or several moduli as well as automatically

providing a proper scaling of the parameters used in the opti-

mization procedure, thus avoiding possible numerical diffi-

culties in the calculation of gradients and convergence.

Another advantage is that the isotropic baseline material can

be chosen as an equivalent medium describing the mean iso-

tropic properties of the actual material, if its degree of ani-

sotropy is low. Such an equivalent isotropic medium can

either be arbitrarily chosen or obtained by existing inverse

methods for isotropic foams, e.g., Refs. 6 and 33. In that

sense, the inverse estimation method presented herein will

provide the deviation from the equivalent isotropic material

by means of the scaling constants and does as such result in

a refinement of the properties estimated by existing techni-

ques. For a given material, the pertinence of such a refined

model depends on how deviated is the refinement with

respect to the isotropic baseline material, which can be esti-

mated, e.g., by using the formalism proposed by Norris.34

III. INVERSE ESTIMATION PROCEDURE

A. Optimization problem to solve

The basis for the proposed inverse estimation approach

is a recorded set of target frequency response functions

obtained for the as yet unknown material. Using an appropri-

ate simulation model, the unknown constitutive parameters

are varied such that a satisfactory fit of a predicted frequency

response to the target frequency response functions is

obtained. Thus, an optimal set of constitutive parameters is

retained when the simulated frequency response data is close

to the target frequency response data, within a prescribed tol-

erance. As outlined above, the variables used in the current

work are the scaling factors defined in Eq. (12). In the fol-

lowing, the objective function and the constraint functions of

the optimization problem are defined.

The aim of the optimization procedure is to find the

twelve unknown elastic and anelastic parameters of the ma-

terial. As a preliminary step in the estimation of the parame-

ters of the model, the isotropic baseline material is defined

by arbitrarily setting numerical values for the parameters E,

�, a0, b0 and b0. The choice of such parameters must repre-

sent a feasible material, within the requirements expressed

above, i.e., E > 0, �1 < � < 1=2 and 0 < a0 � 1. The opti-

mization space is then defined as the set of unknown consti-

tutive parameters, here the scaling constants previously

defined, written as

x ¼ ½n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 �T;
(16)

where, for clarity it is recalled that, the different parameters

used, respectively, denote the non-dimensional counterparts

of

X¼ ½E1 E2 E3 G23 G31 G12 �12 �13 �23 a b b �T:
(17)

The model fit is performed on a set of transfer functions,

denoted u, to be specified later on in Sec. III B. The target

variable space is denoted x0, the aim being to obtain x � x0

by minimizing an appropriate objective function. The objec-

tive function to be minimized is defined as the quadratic rel-

ative difference between the simulated transfer functions and

the target transfer functions, summed over the frequency

points, as

f0ðxÞ ¼ 1þ
XN

p¼1

uðxp; xÞ � uðxp; x0Þ
uðxp; x0Þ

����
����
2

; (18)

where xp is the discrete circular frequency axis on which the

computations are performed and N is the number of fre-

quency points. Note that in Eq. (18) a constant is added to

the objective function in order to avoid numerical problems

for small values.

Furthermore, the optimization problem is subject to a

number of numerical constraints, corresponding to the physi-

cal requirements of the material given by Eqs. (14).

B. Setup

The choice of a suitable setup is to some extent a matter

of taste and convenience. The only restriction is that the state

of deformation, the boundary conditions imposed and the ex-

citation itself should be representable with a high degree of

accuracy in a simulation model. Many possible configura-

tions satisfy these conditions and allow the relevant vibration

data to be recorded and thus serve as the target response for

extracting the unknown properties of a given material.
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The aim here is to design a realistic measurement setup

that is sensitive to the different types of motion of the mate-

rial, which are related to the moduli to estimate. The setup

chosen here represents an experimental setup currently under

development at the Marcus Wallenberg Laboratory for

Sound and Vibration Research of the Royal Institute of

Technology (KTH).35 It utilizes a cubic sample of material

placed between a plate driven by a vertical shaker at the bot-

tom and a seismic mass on the top, as depicted in Fig. 1. The

sample is assumed to be in perfect contact with the bottom

and top plates and its lateral faces are free. The seismic mass

is asymmetric in order to enforce shear motion in the sample

and tuned so as to induce variations in the transfer functions

in the frequency range of interest. In such manner, the esti-

mation procedure is sensitive to both compression and shear

moduli of the material. The specific properties of the seismic

mass have to be chosen according to the foam to be tested

and therefore preliminary tests are required in an experimen-

tal context. In fact, for a material with a reasonably low

degree of anisotropy, the first mode visible in the transfer

functions is associated with compression. Other types of

motion such as shear or bending will have a stronger influ-

ence at higher frequencies. For the present purposes, meas-

urements performed with this setup must clearly show these

types of motion in the transfer functions.

The setup is located in a vacuum chamber in order to

eliminate the influence of the fluid in the pores of the mate-

rial. The data thus extracted consists of four transfer func-

tions, between the displacement of the shaker, at point r0,

and the displacement at points rij (i; j ¼ 1; 2). Using a cubic

sample allows to repeat the experiment in the same condi-

tions in the three directions of space, thus giving equal im-

portance to all moduli in the estimation. The function

uðxp; x0Þ of Eq. (18) is therefore numerically constructed as

a juxtaposition of all 12 transfer functions. In such manner,

each step of the optimization process takes into account the

response of the sample in the three directions of space.

The simulations are performed using a conventional fi-

nite element package, integrated as a subroutine within the

numerical optimization algorithm. The optimization proce-

dure is implemented using the globally convergent method

of moving asymptotes (GCMMA),36 which is an improved

version of the well-known method of moving asymptotes.37

The latter is based on an approximation of the objective

function in terms of variable-separated convex functions of

the unknown parameters. At each iteration, the admissible

bounds of each parameter, i.e., the asymptotes of the convex

approximation, are updated and a unique optimal solution is

retained. The improvement in GCMMA consists in perform-

ing outer iterations that ensure a strict decrease of the objec-

tive function and guarantees that the retained set of

parameters is a feasible solution. A detailed presentation of

the GCMMA algorithm would be out of scope here and the

reader is referred to the original papers of Svanberg.36,37

IV. RESULTS

In this paragraph, the ability of the proposed method to

estimate the physical parameters of a given material to a rea-

sonable degree of accuracy is evaluated. In order to validate

the method against a material with a priori known properties,

the target to be reached is numerically generated using an ar-

bitrary set of feasible physical parameters. The target material

being fictitious, it should be noted that no further assumptions

are made on the values of its parameters and thus the follow-

ing discussion is merely a numerical example.

The simulations are performed on 40 linearly-spaced

frequencies from 1 Hz to 500 Hz. The foam sample is cubic,

with a side length of 10 cm and a density of 45 kg m�3. The

parameters of the target material are chosen as

E1 ¼ 120:9 kPa;

E2 ¼ 84:5 kPa;

E3 ¼ 135:2 kPa;

G23 ¼ 37 kPa;

G31 ¼ 60 kPa;

G12 ¼ 37:5 kPa;

�12 ¼ 0:279;

�13 ¼ 0:285;

�23 ¼ 0:282;

a ¼ 0:855;

b ¼ 307:876 rad s�1;

b ¼ 3: (19)

The isotropic material of reference, used as a starting point

for the optimizer, is arbitrary and as such the specific values

of the parameters do not influence the optimal solution. This

was verified by repeating the optimization process using ran-

domly generated starting points. In the present example, the

properties of the isotropic material of reference are arbitra-

rily chosen as

E ¼ 130 kPa;

G ¼ 50 kPa;

� ¼ 0:3;

a ¼ 0:9;

b ¼ 314:159 rad s�1;

b ¼ 2:5: (20)

FIG. 1. Setup used for the inverse estimation. The foam sample, in light

gray, is placed between a shaker and a seismic mass, in dark gray. The dis-

placement is recovered at points r0 (reference) and rij (i; j ¼ 1; 2).
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The simulations are repeated orienting the material in the

three directions of space. For each simulation, the top four

transfer functions are extracted. The seismic mass is consid-

ered rigid and comprises two square plates, one on top of the

other, as illustrated in Fig. 1. The first has dimensions

10 cm � 10 cm � 2 cm and density 100 kg m�3 and the

second has dimensions 5 cm � 5 cm � 1 cm and density

800 kg m�3. The 12 transfer functions corresponding to

measurements on the four top points in the three directions

of space were used as the database for the GCMMA optimi-

zation algorithm. The latter is implemented in MATLAB

and the finite element model is a COMSOL Multiphysics

subroutine providing the transfer functions. Using quadratic

Lagrange tetrahedral elements, the numerical model conver-

gence is reached with a total of 2604 degrees of freedom.

The optimizer is considered to have converged to an optimal

set of parameters when the variation of the objective func-

tion and of each one of the parameters is less than 10�3.

The values of the optimization space for the target, ini-

tial and optimal sets are summarized in Table I, together

with the relative error between the optimal and target sets of

parameters.

Figure 2 shows the transfer functions of the setup for the

three directions of space. The solid line represents the trans-

fer functions of the targeted material, i.e., the responses of

the setup with properties x0. The dashed line represents the

optimal transfer functions obtained with the present method.

It can be observed that the optimized set of parameters leads

to a good agreement of the transfer functions. Figure 3 shows

the objective function and the values of the optimization var-

iables at each iteration of the optimizer. In the example here

presented, the optimization space reaches a stable state after

32 iterations of the GCMMA algorithm.

Figure 4 shows the stiffness matrix, computed with the

optimal and target values of the optimization variables. The

mean absolute relative error between the optimal and target

stiffness matrices is given by

1

N

XN

p¼1

Hijðxp; xÞ � Hijðxp; x0Þ
Hijðxp; x0Þ

����
����

¼

0:53 4:04 0:90 ; ; ;
4:04 1:36 4:75 ; ; ;
0:90 4:75 0:25 ; ; ;
; ; ; 0:15 ; ;
; ; ; ; 0:22 ;
; ; ; ; ; 0:09

2
666666664

3
777777775
ð%Þ:

(21)

From Table I and Eq. (21) it can be observed that the present

method provides a reasonable agreement between the

obtained and targeted material properties.

V. DISCUSSION

The inverse estimation presented above is performed on

a fictitious material with an arbitrary set of properties, within

the feasible ranges set by Eq. (11). For the example chosen,

TABLE I. Values of the non-dimensional optimization variables for the tar-

geted material and for the optimal solution.

x x0 xopt
xopt�x0

x0
ð%Þ

n1 0.93 0.933644 0.39

n2 0.65 0.652820 0.43

n3 1.04 1.044319 0.42

n4 0.74 0.741094 0.15

n5 1.2 1.202569 0.21

n6 0.75 0.750598 0.08

n7 0.93 0.901233 �3.09

n8 0.95 0.972456 2.36

n9 0.94 0.893167 �4.98

n10 0.95 0.949772 �0.02

n11 0.98 0.978668 �0.14

n12 1.2 1.201572 0.13

FIG. 2. Transfer functions between point r0 and the top plate points. (a)

Foam sample oriented with x direction along the vertical, (b) y direction

along the vertical, (c) z direction along the vertical. ——, target; - - - -, opti-

mal solution.
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the parameters of the model are obtained within a reasonable

degree of accuracy. This inverse estimation procedure is

intended to have a broad application range. However, some

aspects should be considered for its application to a particu-

lar case.

It should be noted that the good agreement between the

optimal solution and the targeted material is reached by the

optimizer simultaneously in the three directions of space. In

fact, the robustness of the objective function, Eq. (18), lies

on the fact that it includes the 12 transfer functions (four

measurement points in the three directions of space) at each

step of the optimization. Therefore, equal importance is

given to the moduli associated to the different directions of

space. In this manner, the accuracy in the estimation of the

different moduli is linked to their nature and not to their

intrinsic predominance in one particular direction. Such pre-

dominance explains the insufficiency of uniaxial material

tests11 for anisotropic cases.

Furthermore, the sensitivity of the method to the differ-

ent types of moduli (Ei, Gij or �ij) is governed by the load-

ing. The asymmetry of the seismic mass controls the type of

motion that is predominant in the response. As pointed out

in Sec. III B, for the method to be applicable to a given ma-

terial, the transfer functions recovered from the sample must

exhibit the types of motion associated with the different

moduli. Therefore, the material to be tested being a priori
unknown, preliminary tests are necessary for each particular

material in order to choose an appropriate loading.

The method presented herein is in principle not restricted

to a particular frequency range. However, at sufficiently high

FIG. 4. Terms of the stiffness matrix, in 105 Pa, as a function of frequency, in Hz. Solid line, stiffness matrix of the target material; dashed line, stiffness ma-

trix computed with the optimal set of parameters.

FIG. 3. Convergence of the objective function with the iterations of the

optimizer.
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frequencies or in the case of materials with high damping, the

response of a particular material may exhibit a less resonant

behavior. In such cases, the variations of the transfer functions

with frequency may conceal the contribution of anisotropy.

VI. CONCLUSION

In this paper a methodology for the inverse estimation

of the elastic and anelastic parameters governing the

dynamic behavior of the porous frame of open-cell foams is

presented. The underlying model of the material is based on

the augmented Hooke’s law, which provides a clear distinc-

tion between the elastic and anelastic properties of the frame.

The fractional-derivative formalism used for describing ane-

lasticity provides a description of the energy dissipation in

the material with a low number of parameters to estimate. In

addition, introducing an equivalent isotropic medium as a

starting point for the parameter estimation allows for the use

of the present approach as a means of refining results

obtained by any existing method for isotropic media. Thus,

the estimated parameters can be interpreted as the degrees of

anisotropy in the different moduli.

The proposed model is general enough to account for dif-

ferent types of anisotropy in the elastic and anelastic proper-

ties. However, for the purposes of ascertaining the feasibility

of the proposed approach, the number of parameters to esti-

mate was reduced by restricting the analysis to materials pre-

senting proportional damping. The inverse estimation

procedure, consisting in minimizing the deviation between

the simulated and the target transfer functions, is implemented

as an optimization routine, based on the globally convergent

method of moving asymptotes. The latter has the advantage,

over other optimization algorithms, to provide a fast conver-

gence of a problem involving a large number of unknowns.

The application of the proposed method to a cubic sample

of material shows that a good agreement is reached between

the optimal set of parameters and the targeted ones. The setup

that has been used is particularly sensitive to compression and

shear motion, such that the estimated Young’s moduli and

shear moduli are within 0.5% of error, while the estimated

Poisson ratios are found within an error margin of 5%.

In an experimental situation, the choice of the different

loading cases used to balance the sensitivity of the measure-

ment to different types of motion still remains an open ques-

tion. Also, special attention should be given to the boundary

conditions as these may differ between the experiment and

the numerical model. In particular, the attachment at the

interface between the sample and the seismic mass may

introduce additional mass and damping. As stated in the

description of the method, the setup used in the present paper

is intended to be easily implementable in practice. For exam-

ple, another possible setup could consist of a single material

orientation with both axial and shear excitations.

The experimental characterization of open-cell foams

using the presented method is currently under development.

The data thus obtained can be directly employed for simulat-

ing the vibroacoustic behavior of anisotropic porous foams

using the formulation previously developed by Hörlin and

Göransson.31
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